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A Robust Parallel Iterative Solver for Sparse Nonsymmetric Linear Systems

A. Introduction
Block tridiagonal linear systems occur frequently in scientific and engineering computations, often

from a linearization and discretization of a nonlinear differential operator. In this setting three features
are common: many such systems must be solved, each system is large-scale, and the coefficient matrix is
possibly nonsymmetric. The first feature implies that an iterative scheme is desirable since it allows the
linear systems to be solved only to the required accuracy, which needs to be high only for the final few sys-
tems. The second feature implies that an iterative scheme may be necessary, since factorization of a large
linear system may exceed the available computer memory. The third feature rules out several highly suc-
cessful algorithms for symmetric positive definite systems, such as the conjugate gradient (CG) method.

This proposal describes a method developed in [KaSa85], funded by AFOSR, for the solution of non-
symmetric block tridiagonal systems, presents test results and outlines future research directions for
developing a robust parallel iterative solver for nonsymmetric linear systems. The method, block-SSOR
with CG acceleration, has two important properties. Firstly, it is robust. Convergence is assured even for
poorly conditioned systems with arbitrary eigenvalue distributions. Secondly, the method can be imple-
mented with good parallelism, making it suitable for multiprocessor machines.

Many current iterative solvers for nonsymmetric linear systems do not possess the first of these desir-
able properties. Chebyshev and related least-squares polynomial methods can fail if the origin is con-
tained in the convex hull of the eigenvalues; in addition some estimate of the extremal eigenvalues is
required. Generalizations of the conjugate gradient method such as GCR(k) and ORTHOMIN(k) require
that the matrix has a positive definite symmetric part. GMRES(k) does not place any restriction on the
matrix, but can require retaining a large number k of search directions and hence large amounts of addi-
tional storage in order to achieve convergence. Finally, iterative solvers applied to the normal equations
can cause a loss of information as well as a squaring of the condition number, a potential source of numeri-
cal instability.

Section 2 of this proposal outlines the projection method under consideration. Section 3 discusses
some implementation variations that make it suitable for a multiprocessor. Section 4 presents numerical
results from tests run on an Alliant FX/8 minisupercomputer, and section 5 summarizes conclusions about
the algorithm, and suggests extensions for the general sparse case and other applications.

B. Description of the Algorithm
Given the nonsingular system Ax = f with AERNXN and fERN, let the rows of A be partitioned

as

A - FBT (2.1)

where B, e RNXM and B2 E RNX(N - M). Also, let f be partitioned conformally with A as f = (f T , f)T.

Then the block-row symmetric successive over-relaxation (SSOR) method [BjEI791 with respect to this
partitioning is defined as

Algorithm I (Block-row SSOR)
(a) Choose X0 and we (0,2). Set k = 0.
(b) Let

TB ,-1 fB
zI = Xk + wB1 (BiT (1) ( -I Xk)
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Z2 zI + wB2 (B2 B 2)-' (f2 -B2z,)

Z3 z2 + WB2 (B2 B2)-' (f2 -B2 Z2 )

=k+ Z3 + WBI(B T B)-'(f,-BTZ3)
(c) If a stopping condition is not met, set k = k + 1.and go to (b)

InKaSa86] it was shown that the optimal relaxation parameter W is 1; in this case the matrices
wB i (Bi

i B) - 1B' become orthogonal projectors and the algorithm can be simplified:

Algorithm 2 (Optimal block-row SSOR)
(a) Choose x0 and set k = 0.

(b) Set Xk+1 = QXk + f.
(c) If a stopping condition is not met set k = k + 1 and go to (b).

Here the iteration matrix is defined as

Q = (I-P 1 )(I-P 2 )(I-P 1 ),

where

I-P i = I - Bi(BTBi)'B T

= projector onto nullspace of BiT

and the modified right-hand side vector is
= [(I+(I-P)(I-P))(B )T , (I-P)(Bf) T ] f,

with

B-+ :--- (BrB J)- ' BiT

Because Q is a product of orthogonal projectors it is easy to show that Q is symmetric and that the
spectral radius p(Q) is bounded above by 1. Furthermore, since A is nonsingular p(Q) < 1. Unfo_-
tunately p(Q) depends on cos29, where 0 is the smallest angle between the two subspaces S 1 = null(B)
and S2 = null(B T) (see [BjGo73] for a definition of 9 ). This angle can be small, with a correspondingly
slow rate of convergence for Algorithm 2.

Therefore some acceleration technique is desirable. Since p(Q) < 1 implies that (I - Q) is positive
definite, the conjugate gradient method is a natural choice. Using a version of CG from [Reid7l] gives the
algorithm presented in [KaSa88] and that this paper further examines:

Algorithm 8 (Block SSOR with CG acceleretion) T
(a) Initialise x 0 = 0, k = 0, Po = ro = f, and Po =ro ro. Accession Fr

( b ) S e t DT I C T A B 0

Wk = (I-Q)Pk Unamouneed 0
Just if lest on -

Cek = pk /P T

by--

X-+ I--"Xk + kPic Distribution/

Availability C0d8
rk1=rk-CkWk Avail and/or

191t Speolal
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=T

Pk+l rk+l rk+l

/0k+1 =Pk+1/Pk

Pk+1  rk+1 + kPk

(c) If a stopping condition is not met, set k k + 1.and go to (b).

This last method will be called BSSOR in the remaining sections, with only one modification. If X0
is chosen to be the vector f, then Plr0 = Plp0 = 0. In this case

w0 = I - (I-P 1)(l-P 2 )(--P )pO

= Po - (I-Pl)(I-P)Po

= i- (I-P)(I--P2 Po

(I-P1)P2po

also satisfies Plw0 = 0. Since rk+1 is a linear combination of rk and W k and Pk+1 is a linear combina-
tion of Pk and rk+1, an induction argument shows that PIrk = PlPk = 0 for all k. As above, wk can
then be computed using only two rather than three projections per iteration. This reduces execution times
by 20% - 25%. This initialisation also allows the updating of the true residual on each step, avoiding the
need for an additional multiplication by A.. The true residual can be updated by subtracting ctkAPk on
each step. Since PPk =" 0, BiTpk - 0 and those components of the true residual remain 0. Since

B2pk is computed as the first step in finding Wk, the corresponding components of the true residual can
be updated by a saxpy operation. This leads to a 5% reduction in the overall execution time.

C. Implementations

C.1. Partitioning Choices

On each iteration BSSOR requires the formation of the product

w = (I-PI)P 2

and hence the solution of two linear least squares problems. This seems to be an impractical way to solve
linear systems because when A is dense solving a single least squares problem is generally more diffcult
than solving the original system. However, when A is block tridiagonal, that is, when A - [Ei, Ti, DiI
where each El, Ti, and D i is an n)(n matrix, it is possible to select partitionings (2.1) that allow each pro-
jection Pi to be computed as a simultaneous set of smaller least squares subproblems. These independent
subproblems can then be solved in parallel.

To illustrate this idea, consider the case when A has 24 block rows, .pnd label them as 1 throu.gh 24.
Then by putting block rows 1, 2, 5, 6, 9, 10, 13, 14, 17, 18, 21, 22 into BT and the others into B2 , both
will have 8 completely separate larger blocks. This will be denoted by

BT: (0,2),(5,6),(9,1),(13,14),(17,1S),(21,22)

BT: (3,4),(7,8),(11,12),(15,16),(19,20),(23,24),

where the parenthesis indicate the separation between the larger blocks.

This is not the only partition that gives disjoint blocks for the two projections. The number of rows
put into each larger block can be varied, and it is not necessary for BT and BT to have the same size of
blocks. Furthermore some rows can be allowed to appear more than once, e.g., row 3 can be put into one
larger block of BjT and one of B T .
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Although tests are restricted to block tridiagonal systems in this paper, the only property that is
important here is that the system can be row permuted to have separate blocks in each Bir. In particular,
unstructured sparse systems generally have this property. Block tridiagonal systems are used here because
they allow an a priori determination of suitable partitionings.

C.2. Solving the least squares problems
While all of the above versions allow parallel computations, it is still necessary to simultaneously

solve least square subproblems of the form
min 1 w - CsII, (3.1)

where C has block dimensions 4X2 for the above partition, and w consists of the components of f
corresponding to C's columns.

Several algorithms exist for solving problem (3.1). Orthogonal factorisation techniques [GoVL83]
have the advantage of being numerically stable, but require a relatively large amount of storage for the
factors. Paige and Saunder's algorithm LSQR [PaSa821 is an iterative method which solves the augmented
system

[I~ C][;]= [;;(3.2)
it proved to be rather time consuming.

Another possible approach is to solve the normal equations

CTCs = CTw. (3.3)

While it can be argued that this is no improvement over solving the normal equations for the original sys-
tem Ax = f, test results of section 4 show that in practice the subproblems (3.3) remain well-conditioned
even when the original system is ill-conditioned. Combined with the gain due to parallelism, this makes
(3.3) a reasonable approach. Furthermore CTC is symmetric positive definite and so more efficient solvers
are available.

The discussion above is not meant to be exhaustive but rather to reveal the issues involved. The
solution method chosen for (3.1) or (3.3) will depend on the structure of C which in turn will depend on
the source of the matrix A. An inexpensive iterative method with an early termination criterion could be
used during the first few iterations of BSSOR, with a direct method subsequently used when the solution is
near and high accuracy of the inner iterations is needed. This flexibility of the algorithm allows it to be
custom-tailored to the problem being solved.

D. Numerical Results

D.1. Test Problems

BSSOR is tested with block tridiagonal systems created by using 5-point central difference operators
corresponding to elliptic partial differential equations with Dirichlet boundary conditions on the unit
square. The equations are the same set used in [Kamag6], where a uniform grid of size h = 1/(n+1) is used
for both the x and y coordinates with n ranging between 8 and 64. Note that in this case n is both the
block size and the number of blocks, so that A is of order n2. The right-hand side function g is selected to
give a predetermined solution so that both the residual norm and error norm can be checked. The test
problems and their solutions follow:
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Problem Is
-Urz - = g

U = x+y

Problem 2t

- u. - [(I + xY) uJ, - 0 [co(x) ux + (e- x + x) u) + 3u = g

= 5, 250, 10000

U=x+y

Problem as

e-"u.). - (e--4u,), + #(x+y)uy + [8(x+y)u], + (I +x+y)-u = g

= 5, 250, 10000

u - xe-Ysin(7rx)sin(7ry)

Problem 4:

-u= - u. - lOOxu, + yu" - 100 (x+Y) u = gxy

U = X+y

Problem 5s

- U= - U17 - xux + 200yuy - 300u = g

U = X+y

Problem 6:

- - u17 + 1000ex ( u, - Uy) = g

U=X+y

In the testing 2a, 2b, 2c and 3a, 3b, 3c are used to differentiate between the values / = 5, 250, 1000,
respectively.

These problems are chosen to represent a variety of possible eigenvalue distributions for the matrix

A. In particular, problems 4-8 have eigenvalues on both sides of the imaginary axis and symmetric parts

that have both positive and negative eigenvalues [KaSa86], features that make these problems especially

challenging. Additionally, problem 4 has a condition number that grows rapidly with n; for n = 32 the

condition number is already 6.0 X 1012.
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D.2. Stopping Conditions

Each experiment is terminated whenever the initial residual of the original system is reduced by 10-4 , that
is, whenever

I1rdl < 1o- llroll, (4.1)

where rk = f - AXk. The only exception to this is when GMRES(k) is used with a preconditioner, in which
case the residual of the preconditioned system is used. The outer CG iteration is started with an initial
estimate of x = 0 so that the initial residual is simply the right hand side vector. An additional stopping
condition is provided in case too many iterations of the CG algorthm are executed. This condition, how-
ever, is not met in any of the test runs.

D.3. Use of Parallelism
All tests are performed on an Alliant FX/8 at the Center for Supercomputing Research and Develop-

ment of the University of Illinois. The FX/8 is a shared memory multiprocessor with 8 computational ele-
ments (CEs). Each CE has vector processing ability, with 8 vector registers containing 32 64-bit words
each.

The speedup sk realized by k CEs is defined as

s k :i t1/tk,

where tj is the time required for execution on j processors. In order to keep the other programming vari-
ables constant, for all runs Partition 1 is used and the least squares subproblems are solved by using a
Cholesky factorisation of the normal equations. Vectorisation is used for both the 1 CE and the 8 CE
runs.

Concurrency can occur in two basic ways in BSSOR. First, when computing a projection y = Pix
each least squares subproblem can be solved simultaneously. For the partitioning used, this yields a possi-
ble n/4 parallel tasks. Vectorisation can then be used within each least squares subproblem so that the
overall projection is calculated in concurrent-outer/vector-inner mode. Second, the basic vector opera-
tions such as inner products and (vector + scalar*vector) required in the CG method can be spread among
the available processors, i.e., executed in vector-concurrent mode. The latter is possible in any linear
solver that involves long vectors, while the former is unique to BSSOR.

Speedups realized on the 8 CE's of the Alliant FX/8 range from 5 to 6 for problems tested.

D.4. Solving the Least Squares Subproblems

Before discussing the method of choice, some observations regarding the structure of C and CTC are
in order. For the above test problems, with the proposed partition (two block row partitioning) C is of the
form,

DO0
T D

C D T

0OD

and CTC = TT p

In the above forms D, T, and P represent a diagonal, tridiagonal, and pentadiagonal matrix, respectively,
where in general each one may be different.
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From the minimax characterization of the singular values of C and A [GoVL83] it is easy to show
that the condition number ic(C) of C can never be worse than that of A. Table 4.4 shows the maximum of
tc(C) over all the subproblems involved in problem 4, along with the estimates for x(A) given in [KaSaSS].
The condition of the subproblems is generally much better than the overall condition of A, and this holds
for each of the 5 test problems. A possible explanation is that the W-conditioning of A appears not in the
subproblems but instead in the angles between the range spaces of P1 and P 2.

Table 1: maxic(C) vs. P(A)

Condition Number

Max of (C) K102

86 0.2 X10 2  0.8 X101
0.2 X10 2  0.2 X106

32 0.1 X10 2  0.6 XlO 3

64 0.1 X10 2  I
* Not calculated

Another issue in choosing a solver for the least squares subproblems is that a stopping criterion must
be set for the iterative methods. Let "inner" refer to the subproblem computations and "outer" refer to the
computations specified by BSSOR. It is reasonable to require the inner accuracy to be at least as good as
the outer accuracy. If it is much more accurate, then the projectors Pi are well defined and the number of
outer iterations needed is the same as that required by the direct methods, but more work must be done on
each inner iteration. Conversely if the inner accuracy required approaches that of the outer accuracy, less
work is done on each inner iteration but now the projectors are defined with random errors on the order of
that desired in the solution; more outer iterations will be performed and the algorithm may even fail to
converge. Because one of the motivations for BSSOR is to achieve the robustness that other methods lack,
all of the experiments use an inner tolerance for the residual norm that is 10 times more stringent than the
outer tolerance.

Results comparing the solvers for problems 4 - 6 show that using preconditioned C.G. schemes for
solving the least squares subproblems (normal equations) require the least time and storage. These
methods have interesting behavior; as the outer iterations proceed the inner CG method requires fewer and
fewer iterations.

D.5. Comparison with Other Methods

Four algorithms are compared to the BSSOR method. A version of PCGPAK supplies three: Gen-
eralized Conjugate Residuals (GCR(k)), Generalized Minimum Residual (GMRES(k)), and ORTHOMIN(k)
[Elma82,SaScS6,EiES83J. The fourth is the conjugate gradient method used on the normal equations of A;
this should not be confused with the use of conjugate gradients to solve the least square- subproblems in
BSSOR. Preconditioners used in PCGPAK are ILU(0), MILU(0), and SSOR(1); while CG is tested with
and without IC(0) preconditioning.

The stopping criterion adopted halts iterations when the relative residual norm is reduced by a fac-
tor of 10 -4. One important difference is that GMRES(k) must use the residual of the preconditioned sys-
tem for the stopping criterion. Since the initial preconditioned residual can be many orders of magnitude
larger than the unpreconditioned residual, this sometimes causes GMRES(k) to terminate prematurely.
Another stopping criterion is necessary to guard against stalling, and in the experiments the iterations are
terminated if the residual norm is not reduced by 10 - within 10 iterations.

The version of PCGPAK used is optimized for the Alliant FX/8, and exploits both the vectorization
and concurrent features of that machine [AnSa88].
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CG is also used with the incomplete Cholesky factorisation preconditioner IC(O). Since ATA is not
necessarily an M-matrix, there is no assurance that the factorization can be carried out to completion. A
parameter a may be added to the diagonal elements during the factorisation to allow it to proceed, but as
with the PCGPAK methods this is set to 0 for the tests. It is important to note that in general such
parameters are difficult to select adaptively, and in part the intent of these experiments is to use the
methods as black-box solvers.

D.5.1. Problems Compared

Only a subset of problems 1-8 are presented here. Problem 3c has a positive definite symmetric part
and so should be suitable for ORTHOMIN(k) and GCR(k). Problems 4-6 have indefinite symmetric parts;
problem 4 additionally is ill-conditioned making it difficult for CG to solve. Problem size of n = 64 is
used, so that full parallelism can be achieved by BSSOR.

D.5.2. Results
An upper limit of 2000 iterations is imposed on each run, and experiments that exceed that bound

are regarded as failing and marked with an error code of MX. Three other conditions are labeled failures.
If more than 10 iterations occur without a reduction in the residual the run is marked RS for "Residual
Stalls". If the preconditioner cannot be formed, an error code of UP for "Unstable Preconditioner" is used.
Finally, because GMRES(k) uses the residual for the preconditioned system as a stopping criterion, it can
terminate iterations while the true residual is still large. If it exceeds 1, the run is labeled LR for "Large

Residual".

Fig. 2 shows which failures occur for the various methods. Clearly BSSOR has a robustness
unmatched by the other solvers.

Figure 3 compares the efficiency of BSSOR with the other unpreconditioned methods. The closest
one in robustness is CG on the normal equations. The preconditioned methods, however, can out perform
BSSOR when they work.

This comparison of BSSOR with preconditioned methods is unfair in one way. Only a default value
of the parameter r defined in section 4.6.1.1 is used. In practice the user may be able to find values that
prevent the factorisation failures from occurring. This is not done here because the intent of the testing is
to measure how the methods compare as "black-box" solvers. Given some knowledge of the systems being
solved, as is the case when the same system is solved witl. several different right-hand sides, adaptively
finding and using an optimal acceleration parameter may be more practical. Tables A.1 - A.4 summarize
the results for problems 3C-6 with n = 64.

Another possible objection to the comparisons with the CG-like methods is that the value of k may
be too small. To see if increasing k improves robustness, GMRES(k) is tested with k = 20 on problems 4 -
6 with n = 64.. The results are shown in Table A.5.

In summary, three results of the testing stand out. BSSOR is more reliable than the other solvers, is
faster than the unpreconditioned methods, and is generally slower than the preconditioned methods when
they succeed.

E. Conclusions and future research
The BSSOR method for solving linear. systems is a remarkably robust iterative scheme that

transforms a nonsymmetric system with an arbitrary eigenvalue distribution into a symmetric one with
eigenvalues restricted to (0,1). When applied to block tridiagonal systems concurrent operations on
separate blocks becomes possible. Of the many block row partitionings that yield parallelism, the ones
that allow the most concurrent tasks perform the best.

-8-



Figure 2: Failures of Methods
Problem

Method n 32 _ n 64
3c 4 5 6 3c 4 5 8

BSSOR
GCR(3) RS RS RS RS

GCR(3)-ILU RS MX RS RS MX
GCR(3)-MILU MX UP
GCR(3)-SSOR UP MX UP UP RS RS UP

GMRES(3) RS RS RS RS
GMRES(3)-ILU RS LR RS RS LR

GMRES(3)-MILU LR UP
GMRES(3)-SSOR UP RS UP UP RS RS UP

ORTHOMIN(3) RS RS RS RS

ORTHOMIN(3)-ILU RS RS RS RS RS RS
ORTHOMIN(3)-MILU RS RS UP
ORTHOMIN(3)-SSOR UP RS RS UP UP RS RS UP

CG MX

CG-IC(O) UP UP

UP = Unstable Preconditioner

Failure codes: RS = Residual Stagnates
MX = Exceeds Maximum Iterations
LR = Large Residual

Figure 3: Times for Unpreconditioned Methods (sec)
n Problem Method

BSSOR GCR(3) GMRES(3) ORTHOMIN(3) CG

3c 0.94 8.80 8.74 5.41 1.85
4 6.88 * * 3.7732
5 2.43 * * * 2.09
8 2.56 3.48 3.45 3.89 1.45

3c 5.99 50.30 49.22 49.31 14.35
4 79.31 * * * 74.4864 5 28.42 * 43.05

8 17.33 12.34 12.24 13.48 15.18
• Method Failed

For the problems examined here, each of the generated subproblems in turn is highly structured,
making them amenable to being solved on a multiprocessor. This makes the algorithm particularly suited
for a hierarchal memory machine such as Cedar. This multiprocessor is implemented with a global
memory which supports up to 8 clusters; each cluster currently is an Alliant FX/8 with multiprocessing
and vector capabilities and its own memory. With this architecture the separate blocks created by BSSOR
can be assigned to individual clusters. Solving each least squares subproblem can then be done entirely
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within a cluster. Global memory can hold the vectors defined by the outer COG iteration, and data com-
munication between clusters can be exclusively through those vectors. Implementation of BSSOR on
Cedar would allow the treatment of partial differential equations in three d'mensions, where each least
squares subproblem is large scale, sparse, and structured, and should be solved via an iterative scheme.
This is an important future research issue for which this activity is in need of a more powerful multipro-
cessor, e.g. an FX/80 which has more powerful computational elements, larger cache, and larger memory.

BSSOR compares favorably with CC-like iterative methods for nonsymmetric systems when they are
used without parameter estimation. The storage requirements are minimal and reliability is high. Usually
BSSOR is more efficient than the unpreconditioned methods, and is slower only if the CC-like method is
successfully used with a preconditioner.

Although testing has been restricted to block tridiagonal systems in this paper, BSSOR can be
applied to other problems. The crucial property of block tridiagonal systems is that they can be easily
row-permuted to yield separable systems in Bi T. Any sparse system of equations that can be reordered
into a banded system can also be solved using this method, only now the blocks have variable size. Nar-
rower bandwidths will give greater parallelism and hence efficiency, but the method can still be applied
even in the dense or sparse unstructured case [Kacz37]. Furthermore, the system need not be linear. These
last two points, unstructured sparse linear problems and handling sparse nonlinear systems, are important
research issues for further extension of BSSOR. Another prvtential extension of the method is to sparse
least squares problems. The adjustment of geodetic networks, for example, leads to least squares problems
where the coefficient matrix has block angular form [GoPS80). This form requires no further permutation
to be suitable for block row projection methods.
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Table A.1: Comparison of Methods for Problem 3c. n = 84
Method Precond Iters Time Residual Failure Code

Block SSOR - 116 0.599464E+01 0.575479E-03
- 1947 0.503018E+02 0.474242E-03

ILU 7 0.209307E+01 0.328218E-03

GCR(3) MILU 5 0.163364E+01 0.164215E-03

SSOR UP

- 1947 0.492165E+02 0.474242E-03

ILU 7 0.189987E+01 0.328218E-03
GMRES(3) MILU 5 0.151040E+01 0.184215E-03

SSOR UP

1839 0.493057E+02 0.474713E-03
ORTHOMIN(3) ILU 7 0.209663E+01 0.305439E-03

MILU 5 0.163631E+01 0.15118SE-03

SSOR UP

- 618 0.143547E+02 0.471824E-03
IC(O) 7 0.944420E 00 0.893797E-04

UP Unstable Preconditioner

Failure codes: RS - Residual Stagnates
MX Exceeds Maximum Iterations
LR Large Residual

Table A.2: Comparison of Methods for Problem 4. n - 84
Method Precond Iters Time Residual Failure Code

Block SSOR - 300 0.793134E+02 0.479802E-04
- 29 0.161787E+02 0.150230E+02 RS

[LU 46 0.994555E+01 0.315676E+02 RS
MILU 1 0.851480E+00 0.181254E--08
SSOR 647 0.135435E+03 0.156203E+02 RS

- 629 0.162156E+02 0.150230E+02 RS

ILU 38 0.745205E+01 0.315678E+02 RS
GMRES(3) MILU 1 0.801980E+00 0.181254E--0

SSOR 28 0.513346E+01 0.156204E+02 RS

- 17 0.528290E+00 0.178171E+02 RS
ILU 224 0.406544E+02 0.325586E+02 RS

ORTHOMIN(3) MILU 1 0.847800E+00 0.181254E-06

SSOR 128 0.272351E+02 0.188143E+02 RS

- 2000 0.429486E+02 0.944334E-03 MXIC(0) UP

UP = Unstable Preconditioner

Failure codes: RS = Residual Stagnates
MX - Exceeds Maximum Iterations
LR = Large Residual
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Table A.3: Comparison of Methods for Problem 5. n 64
Method Precond Iters f Time Residual Failure Code

Block SSOR - 300 0.284214E+02 0.975404E-05
- 133 0.344119E+01 0.605459E+00 RS

ILU 114 0.236077E+02 0.477515E+00 RS

GCR(3) MILU 1 0.893210E+00 0.561537E-12
SSOR 189 0.397837E+02 0.433020E+00 RS

- 133 0.347982E+01 0.805459E+00 RS
ILU 70 0.131598E+02 0.477517E+00 RS

GMRES(3) MILU 1 0.892620E+00 0.560116E-12

SSOR 118 0.224104E+02 0.433020E+00 RS
- 65 0.196827E+01 0.613196E 00 RS

ILU 98 0.203637E+02 0.528433E+00 RS
ORTHOMIN(3) MILU 1 0.889790E+00 0.561537E-12

SSOR 76 0.166553E+02 0.479316E+00 RS

- 1864 0.430476E+02 0.148442E-04

O1(0) 396 0.352268E+02 0.150832E-04

UP = Unstable Preconditioner

Failure codes: RS = Residual Stagnates
MX Exceeds Maximum Iterations
LR Large Residual

Table A.4: Comparison of Methods for Problem 6. n = 64

Method Precond Iters Time Residual Failure Code

Block SSOR 109 0.173253E+02 0.192833E-03
- 483 0.123350E+02 0.254707E-03

ILU 2000 0.401148E+03 0.149972E+06 MX
G___MILU UP
SSORUP

- 483 0.122430E+02 0.254707E-03
RLU 2 0.111076E+01 0.285255E+03 LR

GMRES(3) MILU UP

SSOR UP

- 458 0.134819E+02 0.240795E--03
ILU 206 0.428312E+02 0.149968E+06 RS

ORTHOMIN(3) MILU UP

SSOR UP
- 657 0.151798E+02 0.256340E-03

IC(0) 90 0.855858E+01 0.252914E-03

UP = Unstable Preconditioner

Failure codes: RS = Residual Stagnates
MX = Exceeds Maximum Iterations
LR = Large Residual
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Table A.5: GMRES(20) with n 4 64
Problem Precond Iters Time Residual Notes

- 77 0.279077E+01 0.127500E+02 RS
ILU 52 0.105483E+02 0.212383E+02 RS

MILU I 0.804430E+00 0.181254E-06

SSOR 31 0.631055E+01 0.158618E+02 RS

- 218 0.787123E+01 0.497598E+00 RS
ILU 79 0.158311E+02 0.730619E-05

MILU 1 0.884910E+00 0.560116E-12
SSOR 103 0.208793E+02 0.905222E-05

- 476 0.172964E+02 0.249851E-03

ILU 2 0.112231E+01 0.265255E+03 LR

MILU - - - uP
SSOR - - - UP

UP = Unstable Preconditioner

Failure codes: RS = Residual Stagnates
MAXIT = Exceeds Maximum Iterations
LR - Large Residual
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